8. Statistics and Probability

Introduction for Exercise 8.1

Concept corner

Note: Measures of Central Tendency: It is often convenient to have one number that represent the whole data. Such a number is called a Measures of Central Tendency.

The most common among them are Arithmetic Mean, Median, Mode.

Data	The numerical representation of facts is called data.
Observation	Each entry in the data is called an observation.
Variable	The quantities which are being considered in a survey are called variables. Variables are generally denoted by x_{i}, where $i=1,2,3, \ldots, n$.
Frequencies	The number of times, a variable occurs in a given data is called the frequency of that variable. Frequencies are generally denoted as f_{i}, where $i=1,2,3, \ldots, n$.
Arithmetic Mean	The Arithmetic Mean or Mean of the given values is sum of all the observations divided by the total number of observations. It is denoted by \bar{x} (pronounced as x bar) $\bar{x}=\frac{\text { Sum of all the observations }}{\text { Number of observations }}$

$>$ Measures of Variation (or) Dispersion of a data provide an idea of how observations spread out (or) scattered throughout the data.
$>$ Different Measures of Dispersion are

1. Range
2. Mean deviation
3. Quartile deviation
4. Standard deviation
5. Variance
6. Coefficient of Variation

Range	The difference between the largest value and the smallest value is called Range. Range $R=L-S$ Coefficient of range $=\frac{L-S}{L+S}(L-$ Largest value, $S-$ Smallest value $)$
Deviation from the mean	For a given data with n observations $x_{1}, x_{2}, x_{3} \ldots x_{n}$ the deviations from the mean \bar{x} are $x_{1}-\bar{x}, x_{2}-\bar{x}, \ldots x_{n}-\bar{x}$
Squares of deviations from the mean	The squares of deviation from the mean \bar{x} of the observations $x_{1}, x_{2} . . x_{n}$ are $\left(x_{1}-\bar{x}\right)^{2},\left(x_{2}-\bar{x}\right)^{2}, \ldots\left(x_{n}-\bar{x}\right)^{2}$ or $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ $\left(x_{i}-\bar{x}\right)^{2} \geq 0$ for all observations $x_{i}, i=1,2,3, \ldots n$. If the deviations from the mean $\left(x_{i}-\bar{x}\right)$ are small, then the squares of the deviations will be very small.
Variance	The mean of the squares of the deviations from the mean is called Variance. It is denoted by $\sigma^{2}($ read as sigma square $)$
Standard Deviation	The positive square root of Variance is called Standard deviation. That is, standard deviation is the positive square root of the mean of the squares of deviations of the given values from their mean. It is denoted by σ Standard deviation $\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}}$

Calculation of Standard Deviation for ungrouped data

(i)	Direct Method	$\sigma=\sqrt{\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}}$
(ii)	Mean Method	If $d_{i}=x_{i}-\bar{x}$ are the deviations, then $\sigma=\sqrt{\frac{\Sigma d_{i}^{2}}{n}}$
(iii)	Assumed Mean Method	$\sigma=\sqrt{\frac{\Sigma d_{i}^{2}}{n}-\left(\frac{\Sigma d_{i}}{n}\right)^{2}}$
(iv)	Step deviation Method	$\sigma=c \times \sqrt{\frac{\Sigma d_{i}^{2}}{n}-\left(\frac{\Sigma d_{i}}{n}\right)^{2}}$

Calculation of Standard Deviation for grouped data

(i)	Mean Method	$\sigma=\sqrt{\frac{\Sigma f_{i} d_{i}^{2}}{N}}$, where $N=\sum_{i=1}^{n} f_{i}$
(ii)	Assumed Mean Method	$d_{i}=x-A, \quad \sigma=\sqrt{\frac{\Sigma f_{i} d_{i}^{2}}{N}-\left(\frac{\Sigma f_{i} d_{i}}{N}\right)^{2}}$

Calculation of Standard deviation for continuous frequency distribution

(i)	Mean Method	$\sigma=\sqrt{\frac{\Sigma f_{i}\left(x_{i}-\right.}{N}}$	where $x_{i}=$ Middle value of the $i^{\text {th }}$ class $f_{i}=$ Frequency of the $i^{\text {th }}$ class
(ii)	Shortcut Method (or) Step deviation method	$d_{i}=\frac{x_{i}-A}{c}$,	$\sigma=c \times \sqrt{\frac{\Sigma f_{i} d_{i}^{2}}{N}-\left(\frac{\Sigma f_{i} d_{i}}{N}\right)^{2}}$

$>$ The SD of first ' n ' natural numbers, $\sigma=\sqrt{\frac{\mathrm{n}^{2}-1}{12}}$
$>$ The SD will not change when we add or subtract some fixed constant to all the values
$>$ SD of a collection of data gets multiplied or divided by the quantity k, if each item is multiplied or divided by k
$>$ If the frequency of initial class is zero, then the next class will be considered for the calculation of range.
$>$ The range of a set of data does not give the clear idea about the dispersion of the data from measures of Central Tendency. For this, we need a measure which depend upon the deviation from the measures of Central Tendency.
$>\left(x_{i}-\bar{x}\right) \geq 0$ for all observations $x_{i}, i=1,2,3, \ldots n$. If the deviations from the mean $\left(x_{i}-\bar{x}\right)$ are small, then the squares of the deviations will be very small.
Note: While computing standard deviation, arranging data in ascending order is not mandatory.
$>$ If the data values are given directly then to find standard deviation we can use the formula $\sigma=\sqrt{\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}}$
$>$ If the data values are not given directly but the squares of the deviations from the mean of each observation is given then to find standard deviation we can use the formula $\sigma=\sqrt{\frac{\Sigma\left(x_{i}-\bar{x}\right)^{2}}{n}}$

Introduction for Exercise 8.2

Concept corner

Definition: For comparing two or more data for corresponding changes the relative measure of standard deviation called Coefficient of variation.
Coefficient of variation of first data (C.V V_{1}) $=\frac{\sigma_{1}}{\bar{x}_{1}} \times 100 \%$
Coefficient of variation of second data (C.V2) $=\frac{\sigma_{2}}{\overline{x_{2}}} \times 100 \%$
i) The data with lesser coefficient of variation is more consistent or stable than the other data.
ii) The data with greater coefficient of variation is inconsistent.
iii) The data have equal coefficient of variation values one data depends on the other.

To Find the Square root:
$\sqrt{X}=\sqrt{S}+\frac{(X-S)}{2 \sqrt{S}}$
X-the number you want the square root
S - the closet square number you know to X

Example: To find the square root of 75

$$
\begin{aligned}
& X=75, S=81 \text { (nearest square) } \sqrt{S}=9 \\
& \begin{aligned}
& \sqrt{75}=\sqrt{81}+\frac{(75-81)}{2(\sqrt{81})}=9+\frac{-6}{2(9)}=9-\frac{6}{18} \\
&=9-0.333=8.667
\end{aligned}
\end{aligned}
$$

Introduction for Exercise 8.3

Concept corner

$>$ A random experiment is an experiment in which
(i) The set of all possible outcomes are known (ii) Exact outcome is not known
$>$ Sample space: The set of all possible outcomes in a random experiment is called a sample space. It is generally denoted by S
$>$ Sample point: Each element of a sample space is called a sample point.
$>$ Tree diagram: Tree diagram allow us to see visually all possible outcomes of an random experiment. Each branch in a tree diagram represent a possible outcome.

Sample space for rolling one die	Sample space for toss two coins

Events	Explanation	Example
Equally likely events	Two or more events are said to be equally likely if each one of them has an equal chance of occurring.	Head and tail are equally likely events in tossing a coin.
Certain events	In an experiment, the event which surely occur is called certain event.	When we roll a die, the event of getting any natural number from 1 to 6 is a certain event.
Impossible events	In an experiment if an event has no scope to occur then it is called an impossible event.	When we toss two coins, the event of getting three heads is an impossible event.
Mutually exclusive events	Two or more events are said to be mutually exclusive if they don't have common sample points. i.e., events A, B are said to be mutually exclusive if, $A \cap B=\emptyset$.	When we roll a die the events of getting odd numbers and even numbers are mutually exclusive events.
Exhaustive events	The collection of events whose union is the whole sample space are called exhaustive events.	When we toss a coin twice, the collection of events of getting two heads, exactly one head, no head are exhaustive events.
Complementary events	The complement of an event A is the event representing collection of sample points not in A. It is denoted A^{\prime} or A^{c} or \bar{A} The event A and its complement A^{\prime} are mutually exclusive and exhaustive.	When we roll a die, the event 'rolling 5 or 6' and the event of rolling 1, 2, 3 or 4 are complementary events.

Elementary Event: If an event E consists of only one outcome then it is called an elementary event.

Probability of an event:

In a random experiment, let S be the sample space and $E \subseteq S$. Then if E is an event, the probability of occurrence of E is defined as
$P(E)=\frac{\text { Number of outcomes favourable to occurence of } E}{\text { Number of all possible outcomes }}=\frac{n(E)}{n(S)}$
$>P(E)=\frac{n(E)}{n(S)}$
$>P(S)=\frac{n(S)}{n(S)}=1 . \quad$ The probability of sure event is 1 .
$\Rightarrow P(\varnothing)=\frac{n(\varnothing)}{n(S)}=\frac{0}{n(s)}=0$. The probability of impossible event is 0 .
$>$ Since E is a subset of S and \emptyset is a subset of any set,
$\emptyset \subseteq E \subseteq S$
$P(\varnothing) \leq P(E) \leq P(S)$
$0 \leq P(E) \leq 1$
Therefore, the probability value always lies from 0 to 1 .
$>$ The complement event of E is \bar{E}.
Let $P(E)=\frac{m}{n}$
(Where m is the number of favorable outcomes of E and
n is the total number of possible outcomes).
$P(\bar{E})=\frac{\text { Number of outcomes unfavourable to occurance of } E}{\text { Number of all possible outcomes }}$
$P(\bar{E})=\frac{n-m}{n}=1-\frac{m}{n}$
$P(\bar{E})=1-P(E)$
$>P(E)+P(\bar{E})=1$

Introduction for Exercise 8.4

Concept corner

Algebra of events In a random experiment, let S be the sample space. Let $A \subseteq S$ and $B \subseteq S$ be the events in S. We say that
(i) $(A \cap B)$ is an event that occurs only when both A and B occurs.

(ii) $(A \cup B)$ is an event that occurs when either one of A or B occurs.

(iii) \bar{A} is an event that occurs only when A doesn't occur.

$\Rightarrow A \cap \bar{A}=\emptyset, A \cup \bar{A}=S$
$>$ If A, B are mutually exclusive events, then $P(A \cup B)=P(A)+P(B)$

Chapter 8 - Statistics and Probability
P (Union of mutually exclusive events) $=\sum$ (Probability of events)

Verbal description of the event	Equivalent set theoretic notation
Not A	\bar{A}
A or B (at least one of A or $B)$	$A \cup B$
A and B	$A \cap B$
A but not B	$A \cap \bar{B}$
Neither A nor B	$\bar{A} \cap \bar{B}$
At least one of A, B or C	$A \cup B \cup C$
Exactly one of A and B	$(A \cap \bar{B}) \cup(\bar{A} \cap B)$
All three of A, B and C	$A \cap B \cap C$
Exactly two of A, B and C	$(A \cap B \cap \bar{C}) \cup(A \cap \bar{B} \cap C) \cup(\bar{A} \cap B \cap C)$

Theorem 1: If A and B are two events associated with a random experiment, then prove that (i) $P(A \cap \bar{B})=P($ only $A)=P(A)-P(A \cap B)($ ii $) P(\bar{A} \cap B)=P($ only $B)=P(B)-P(A \cap B)$

Addition Theorem of Probability:
(i) If A and B are any two events then, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
(ii) If A, B and C are any three events then,

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(A \cap C)+P(A \cap B \cap C)
$$

