8. Statistics and Probability

Introduction for Exercise 8.1

Concept corner

Note: Measures of Central Tendency: It is often convenient to have one number that represent the whole data. Such a number is called a Measures of Central Tendency.

The most common among them are Aritimetic Mean, Median, Mode.			
Data	The numerical representation of facts is called data.		
Observation	Each entry in the data is called an observation.		
Variable	The quantities which are being considered in a survey are called variables. Variables are generally denoted by x_i , where $i = 1, 2, 3,, n$.		
Frequencies	The number of times, a variable occurs in a given data is called the frequency of that variable. Frequencies are generally denoted as f , where $i = 1.2.2$, n		
Arithmetic Mean	The Arithmetic Mean or Mean of the given values is sum of all the observations divided by the total number of observations. It is denoted by \bar{x} (pronounced as x bar) $\bar{x} = \frac{\text{Sum of all the observations}}{\text{Number of observations}}$		
L			
Methods of finding Mean			
Vngrouped ↓	data Grouped data		
Direct Met	thod Direct Method Assumed Mean Method Step Deviation Method		
\downarrow	\downarrow \downarrow \downarrow		
$\overline{X} = \frac{\sum_{i=1}^{n}}{n}$	$\frac{x_i}{\underline{X}} = \frac{\sum_{i=1}^{n} x_i f_i}{\sum_{i=1}^{n} f_i} \qquad \qquad \overline{X} = A + \frac{\sum_{i=1}^{n} f_i d_i}{\sum_{i=1}^{n} f_i} \qquad \qquad \overline{X} = A + C \times \frac{\sum_{i=1}^{n} f_i d_i}{\sum_{i=1}^{n} f_i}$		

The most common among them are Arithmetic Mean. Median. Mode.

Measures of Variation (or) Dispersion of a data provide an idea of how observations spread out (or) scattered throughout the data.

where $d_i = x_i - A$

- Different Measures of Dispersion are
 - 1. Range2. Mean deviation3. Quartile deviation4. Standard deviation5. Variance6. Coefficient of Variation

where $d_i = \frac{x_i - A}{c}$

Chapter 8 - Statistics and Probability

	Range	е	The difference between the largest value and the smallest value is called Range.		
			Coefficient of range = $\frac{L-S}{L-S}$ (L – Largest value, S – Smallest value)		
ŀ	Devria	tion from	For a given data with <i>n</i> observations $x_1 x_2 x_3 x_4 x_5$ the deviations from		
	the m	ean	the mean \bar{x} are $x_1 - \bar{x}$, $x_2 - \bar{x}$,, $x_n - \bar{x}$		
F	Squar	res of	The squares of deviation from the mean \bar{x} of the observations x_1, x_2x_n		
	devia	tions	are $(x_1 - \bar{x})^2$, $(x_2 - \bar{x})^2$, $(x_n - \bar{x})^2$ or $\sum_{i=1}^n (x_i - \bar{x})^2$		
	from	the	$(x_i - \bar{x})^2 \ge 0$ for all observations x_i , $i = 1, 2, 3,, n$. If the deviations from		
	mean	l	the mean $(x_i - \bar{x})$ are small, then the squares of the deviations will be		
			very small.		
	Varia	ance The mean of the squares of the deviations from the mean is called			
	Variance. It is denoted by σ^2 (read as sigma square)		Variance. It is denoted by σ^2 (read as sigma square)		
	Variance $\sigma^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$		Variance $\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$		
F	Stand	lard	The positive square root of Variance is called Standard deviation. That is,		
	Devia	tion	standard deviation is the positive square root of the mean of the squares		
			of deviations of the given values from their mean. It is denoted by σ		
			Standard deviation $\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}}$		
L					
	Calculation of standard deviation				
			+		
			Ungrouped (Both discrete		
			data and continuous)		
			\downarrow \downarrow		
	Dir Me	rect thod n	Mean Assumed Step Mean Assumed Step Internet Mean Deviation Mean Deviation Mean Deviation		
			Method Method Method		
C 1	. 1				
Calc	ulatio	n of Standa	ard Deviation for ungrouped data		
	(1)	DIrect Me	$\sigma = \sqrt{\frac{\Sigma x_i^2}{n} - \left(\frac{\Sigma x_i}{n}\right)^2}$		
	(ii)	Mean Me	thod If $d_i = x_i - \bar{x}$ are the deviations, then $\sigma = \sqrt{\frac{\Sigma d_i^2}{n}}$		
	(iii) Assumed Mean Method		Mean Method $\sigma = \sqrt{\frac{\Sigma d_i^2}{n} - \left(\frac{\Sigma d_i}{n}\right)^2}$		
	(iv)	Step devi	ation Method $\sigma = c \times \sqrt{\frac{\Sigma d_i^2}{n} - \left(\frac{\Sigma d_i}{n}\right)^2}$		
Calc	ulatio	n of Standa	ard Deviation for grouped data		
	(i)	Mean Me	thod $\sigma = \sqrt{\frac{\sum f_i d_i^2}{N}}$, where $N = \sum_{i=1}^n f_i$		
	(ii)	Assumed	Mean Method $d_i = x - A$, $\sigma = \sqrt{\frac{\Sigma f_i d_i^2}{N} - \left(\frac{\Sigma f_i d_i}{N}\right)^2}$		

www.waytosuccess.org

Way to Success $^{\circ}$ - 10th Maths

Introduction for Exercise 8.2

Concept corner

Definition: For comparing two or more data for corresponding changes the relative measure of standard deviation called **Coefficient of variation**.

Coefficient of variation of first data (C.V₁) = $\frac{\sigma_1}{\bar{x}_1} \times 100\%$

Coefficient of variation of second data (C.V₂) = $\frac{\sigma_2}{\tilde{x}_2} \times 100\%$

i) The data with <u>lesser</u> coefficient of variation is more consistent or stable than the other data.

ii) The data with greater coefficient of variation is inconsistent.

iii) The data have equal coefficient of variation values one data depends on the other.

To Find the Square root:	Example: To find the square root of 75
$\sqrt{X} = \sqrt{S} + \frac{(X-S)}{2\sqrt{S}}$	$X = 75, S = 81$ (nearest square) $\sqrt{S} = 9$
X –the number you want the square root	$\sqrt{75} = \sqrt{81} + \frac{(75-81)}{2(\sqrt{81})} = 9 + \frac{-6}{2(9)} = 9 - \frac{6}{18}$
S – the closet square number you know to X	= 9 - 0.333 = 8.667

Introduction for Exercise 8.3

Concept corner

- A random experiment is an experiment in which
 (i) The set of all possible outcomes are known (ii) Exact outcome is not known
- Sample space: The set of all possible outcomes in a random experiment is called a sample space. It is generally denoted by *S*
- Sample point : Each element of a sample space is called a sample point.
- Tree diagram: Tree diagram allow us to see visually all possible outcomes of an random experiment. Each branch in a tree diagram represent a possible outcome.

Sample space for rolling one die

Events	Explanation	Example
Equally likely	Two or more events are said to be	Head and tail are equally likely
events	equally likely if each one of them	events in tossing a coin.
	has an equal chance of occurring.	_
Certain events	In an experiment, the event	When we roll a die, the event of
	which surely occur is called	getting any natural number from 1
	certain event.	to 6 is a certain event.
Impossible	In an experiment if an event has	When we toss two coins , the event
events	no scope to occur then it is	of getting three heads is an
	called an impossible event .	impossible event.
Mutually	Two or more events are said to	When we roll a die the events of
exclusive	be mutually exclusive if they	getting odd numbers and even
events	don't have common sample	numbers are mutually exclusive
	points. i.e., events <i>A</i> , <i>B</i> are said	events.
	to be mutually exclusive if,	
	$A \cap B = \emptyset.$	
Exhaustive	The collection of events whose	When we toss a coin twice , the
events	union is the whole sample space	collection of events of getting two
	are called exhaustive events.	heads, exactly one head, no head
		are exhaustive events.
Complementary	The complement of an event A is	When we roll a die , the event
events	the event representing collection	'rolling 5 or 6' and the event of
	of sample points not in A.	rolling 1, 2, 3 or 4 are
	It is denoted A' or A^c or \overline{A}	complementary events.
	The event <i>A</i> and its complement	
	A' are mutually exclusive and	
	exhaustive.	

Introduction for Exercise 8.4

Chapter 8 - Statistics and Probability

Γ	$P(\text{Onion of mutually exclusive events}) = \sum (Probability of events)$		
	Verbal description of the event	Equivalent set theoretic notation	
	Not A	Ā	
	A or B (at least one of Aor B)	$A \cup B$	
	A and B	$A \cap B$	
	A but not B	$A \cap \overline{B}$	
	Neither A nor B	$\bar{A} \cap \bar{B}$	
	At least one of A, B or C	$A \cup B \cup C$	
	Exactly one of A and B	$(A \cap \overline{B}) \cup (\overline{A} \cap B)$	
	All three of A, B and C	$A \cap B \cap C$	
	Exactly two of <i>A</i> , <i>B</i> and <i>C</i>	$(A \cap B \cap \overline{C}) \cup (A \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap C)$	

 $\Sigma(Probability)$ \triangleright

Theorem 1: If *A* and *B* are two events associated with a random experiment, then prove that (i) $P(A \cap \overline{B}) = P$ (only A) = $P(A) - P(A \cap B)$ (ii) $P(\overline{A} \cap B) = P$ (only B) = $P(B) - P(A \cap B)$ Addition Theorem of Probability: (i) If A and B are any two events then, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

(ii) If *A*, *B* and *C* are any three events then,

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$